Scalable spatial transcriptomics through computational array reconstruction – Nature Biotechnology

May Be Interested In:Badenoch demands prosecution of rap group Kneecap over ‘dead Tory’ claim


  • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed 

    Google Scholar 

  • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer, A. A remark on global positioning from local distances. Proc. Natl Acad. Sci. USA 105, 9507–9511 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glaser, J. I., Zamft, B. M., Church, G. M. & Kording, K. P. Puzzle imaging: using large-scale dimensionality reduction algorithms for localization. PLoS One 10, e0131593 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boulgakov, A. A., Ellington, A. D. & Marcotte, E. M. Bringing microscopy-by-sequencing into view. Trends Biotechnol. 38, 154–162 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Weinstein, J. A., Regev, A. & Zhang, F. DNA microscopy: optics-free spatio-genetic imaging by a stand-alone chemical reaction. Cell 178, 229–241.e16 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinstein, J. A. & Qian, N. Volumetric imaging of an intact organism by a distributed molecular network. Preprint at bioRxiv https://doi.org/10.1101/2023.08.11.553025 (2023).

  • Hoffecker, I. T., Yang, Y., Bernardinelli, G., Orponen, P. & Högberg, B. A computational framework for DNA sequencing microscopy. Proc. Natl Acad. Sci. USA 116, 19282–19287 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenstreet, L. et al. DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of current methods. Cell Syst. 14, 844–859.e4 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arxiv.1802.03426 (2018).

  • Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, T. et al. Differentially expressed transcripts from phenotypically identified olfactory sensory neurons. J. Comp. Neurol. 483, 251–262 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cable, D. M. et al. Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 19, 1076–1087 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS 

    Google Scholar 

  • Kajihara, T. et al. Non-rigid registration of serial section images by blending transforms for 3D reconstruction. Pattern Recognit. 96, 106956 (2019).

    Google Scholar 

  • Lee, B. C., Tward, D. J., Mitra, P. P. & Miller, M. I. On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model. PLoS Comput. Biol. 14, e1006610 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nolet, C. J. et al. Bringing UMAP closer to the speed of light with GPU acceleration. In Proc. AAAI Conf. Artif. Intell. Vol. 35, 418–426 (AAAI Press, 2021).

  • Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, S. J. et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods 20, 1323–1335 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Qiu, C. et al. A single-cell time-lapse of mouse prenatal development from gastrula to birth. Nature 626, 1084–1093 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, C. et al. Scalable spatial transcriptomics through computational array reconstruction. Datasets. NCBI SRA. https://www.ncbi.nlm.nih.gov/sra/PRJNA1221542 (2025).

  • Hu, C. et al. Scalable spatial transcriptomics through computational array reconstruction. Source code. Github https://github.com/Chenlei-Hu/Slide_recon (2024).

  • share Share facebook pinterest whatsapp x print

    Similar Content

    Dustin Hoffman wears sunglasses while lying beside a pool
    5 of the best free movies to stream on Tubi, Pluto TV, Plex, and more this week (January 20)
    Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans | Science
    Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans | Science
    Merciless Philadelphia Eagles dismantle Kansas City Chiefs to win Super Bowl
    Merciless Philadelphia Eagles dismantle Kansas City Chiefs to win Super Bowl
    Lenovo Yoga Slim 7x laptop
    Best laptops for college students 2025: Top picks and expert advice
    How to host chic Christmas gathering in your tiny London flat
    How to host chic Christmas gathering in your tiny London flat
    In Pre-Super Bowl Interview, Trump Sings Praises of DOGE, Predicts 'Hundreds of Billions' More in Savings
    In Pre-Super Bowl Interview, Trump Sings Praises of DOGE, Predicts ‘Hundreds of Billions’ More in Savings
    Real News, Real People: Impactful Stories of Today | © 2025 | Daily News