A human metabolic map of pharmacological perturbations reveals drug modes of action – Nature Biotechnology

May Be Interested In:Over 150 women raped during Congo prison break, U.N. says


  • Gregori-Puigjané, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11178–11183 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vincent, F. et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat. Rev. Drug Discov. 21, 899–914 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pemovska, T. et al. Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nat. Commun. 12, 7190 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, A. et al. A next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, D. C. et al. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 41, 845–857 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 846–854 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anglada-Girotto, M. et al. Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nat. Chem. Biol. 18, 482–491 (2022).

  • Zecha, J. et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380, 93–101 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filzen, T. M., Kutchukian, P. S., Hermes, J. D., Li, J. & Tudor, M. Representing high throughput expression profiles via perturbation barcodes reveals compound targets. PLoS Comput. Biol. 13, e1005335 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y., Mitchison, T. J., Bender, A., Young, D. W. & Tallarico, J. A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567–578 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Badwan, B. A. et al. Machine learning approaches to predict drug efficacy and toxicity in oncology. Cell Rep. Methods 3, 100413 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves, E. et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 40, 835–849 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frejno, M. et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat. Commun. 11, 3639 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Douglass, E. F. et al. A community challenge for a pancancer drug mechanism of action inference from perturbational profile data. Cell Rep. Med. 3, 100492 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nair, N. U. et al. A landscape of response to drug combinations in non-small cell lung cancer. Nat. Commun. 14, 3830 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bansal, M. et al. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32, 1213–1222 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duran-Frigola, M. et al. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat. Biotechnol. 38, 1087–1096 (2020)

  • Ortmayr, K., Dubuis, S. & Zampieri, M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat. Commun. 10, 1841 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubuis, S., Ortmayr, K. & Zampieri, M. A framework for large-scale metabolome drug profiling links coenzyme A metabolism to the toxicity of anti-cancer drug dichloroacetate. Commun. Biol. 1, 101 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campos, A. I. & Zampieri, M. Metabolomics-driven exploration of the chemical drug space to predict combination antimicrobial therapies. Mol. Cell 74, 1291–1303 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blasi, F., Sommariva, D., Cosentini, R., Cavaiani, B. & Fasoli, A. Bezafibrate inhibits HMG-CoA reductase activity in incubated blood mononuclear cells from normal subjects and patients with heterozygous familial hypercholesterolaemia. Pharmacol. Res. 21, 247–254 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elis, J. & Rašková, H. New indications for 6-azauridine treatment in man. A review. Eur. J. Clin. Pharmacol. 4, 77–81 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • González-Aragón, D., Ariza, J. & Villalba, J. M. Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells. Biochem. Pharmacol. 73, 427–439 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Cao, S. et al. Tiratricol, a thyroid hormone metabolite, has potent inhibitory activity against human dihydroorotate dehydrogenase. Chem. Biol. Drug Des. 102, 1–13 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diao, Y. et al. Discovery of diverse human dihydroorotate dehydrogenase inhibitors as immunosuppressive agents by structure-based virtual screening. J. Med. Chem. 55, 8341–8349 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chilingaryan, G. et al. Combination of consensus and ensemble docking strategies for the discovery of human dihydroorotate dehydrogenase inhibitors. Sci. Rep. 11, 11417 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wierbowski, S. D., Wingert, B. M., Zheng, J. & Camacho, C. J. Cross-docking benchmark for automated pose and ranking prediction of ligand binding. Protein Sci. 29, 298–305 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corso, G. et al. Deep confident steps to new pockets: strategies for docking generalization. Preprint at arXiv https://doi.org/10.48550/arXiv.2402.18396 (2024).

  • Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwangbo, H., Patterson, S. C., Dai, A., Plana, D. & Palmer, A. C. Additivity predicts the efficacy of most approved combination therapies for advanced cancer. Nat. Cancer 4, 1693–1704 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hardy, R. S., Raza, K. & Cooper, M. S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 16, 133–144 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Caratti, B. et al. The glucocorticoid receptor associates with RAS complexes to inhibit cell proliferation and tumor growth. Sci. Signal. 15, eabm4452 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Snijder, B. et al. Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematol. 4, e595–e606 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves, E. et al. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol. Syst. Biol. 16, e9405 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breinig, M., Klein, F. A., Huber, W. & Boutros, M. A chemical-genetic interaction map of small molecules using high-throughput imaging in cancer cells. Mol. Syst. Biol. 11, 846 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • di Bernardo, D. et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol. 23, 377–383 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Carraro, C. et al. Decoding mechanism of action and sensitivity to drug candidates from integrated transcriptome and chromatin state. eLife 11, e78012 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piazza, I. et al. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11, 4200 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C. et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9, 4307 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinha, S., Sinha, N. & Ruppin, E. Deep characterization of cancer drugs mechanism of action by integrating large-scale genetic and drug screens. Preprint at bioRxiv https://doi.org/10.1101/2022.10.17.512424 (2022).

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappelletti, V. et al. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184, 545–559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okimoto, R. A. et al. Inactivation of Capicua drives cancer metastasis. Nat. Genet. 49, 87–96 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ortmayr, K. & Zampieri, M. Sorting-free metabolic profiling uncovers the vulnerability of fatty acid β-oxidation in in vitro quiescence models. Mol. Syst. Biol. 18, e10716 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmermann, M., Sauer, U. & Zamboni, N. Quantification and mass isotopomer profiling of α-keto acids in central carbon metabolism. Anal. Chem. 86, 3232–3237 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479–498 (2002).

    Article 

    Google Scholar 

  • Sunseri, J. & Koes, D. R. Virtual screening with Gnina 1.0. Molecules 26, 7369 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Share facebook pinterest whatsapp x print

    Similar Content

    The Uplift: The science of happiness
    The Uplift: The science of happiness
    The city of Rome
    Civilization VII review: A major overhaul solves Civ’s oldest problems
    Découvrez l'univers fascinant de Tony Roman, chanteur, producteur et pionnier du rock’n’roll québécois
    Découvrez l’univers fascinant de Tony Roman, chanteur, producteur et pionnier du rock’n’roll québécois
    Liam Payne performing in 2018. Pic: PA
    Liam Payne to feature in Netflix talent show Building The Band months after his death
    News18
    Divyanka Tripathi Opens Up About Her Mental Health Journey: ‘Ignorance Is Bliss’ – News18
    An arty stay in cider land: a brush with the Somerset countryside
    An arty stay in cider land: a brush with the Somerset countryside
    Real News, Real People: Impactful Stories of Today | © 2025 | Daily News